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Abstract Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is

hardly possible to measure fitness for all genotypes in a natural population. Here, we present

quantitative tools to make inferences about epistatic gene interactions when the fitness landscape

is only incompletely determined due to imprecise measurements or missing observations. We

demonstrate that genetic interactions can often be inferred from fitness rank orders, where all

genotypes are ordered according to fitness, and even from partial fitness orders. We provide a

complete characterization of rank orders that imply higher order epistasis. Our theory applies to all

common types of gene interactions and facilitates comprehensive investigations of diverse genetic

interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite

Plasmodium vivax, the fungus Aspergillus niger, and the TEM-family of b-lactamase associated with

antibiotic resistance. For all systems, our approach revealed higher order interactions among

mutations.

DOI: https://doi.org/10.7554/eLife.28629.001

Introduction
The fitness of an individual with a particular genotype is a measure of its expected contribution to

the next generation of the population. The collection of all fitness values for all genotypes, referred

to as the fitness landscape, is a central concept in evolutionary biology (Wright, 1932; Orr, 2009).

The fitness landscape can have a strong impact on the fate of the evolving population, such as, for

example, the risk of a pathogen population to develop drug resistance and to survive under drug

treatment (de Visser and Krug, 2014).

Genetic interactions, or epistasis, are abundant in nature. They can have many causes and occur

at various scales, for instance, among mutations of a protein-coding sequence or between sequen-

ces coding for different genes. Unless there are genetic interactions, we assume that fitness is addi-

tive, that is, the fitness effects of individual mutations sum. An additive fitness landscape is

determined by the wild-type and single-mutant fitness values.

If the fitness landscape is determined by the wild-type, single-mutant, and double-mutant fitness

values, then we say that it has no higher order epistasis. Intuitively, higher order epistasis means that

the fitness of a multiple mutant is unexpected given the fitness of the wild type and all single and

double mutants. For example, Weinreich et al. (2006) showed that five mutations jointly increase

antibiotic resistance considerably more than expected.

Measuring fitness experimentally is challenging. Fitness measurements tend to come with high

uncertainty and they are often obtained only for a subset of genotypes. Moreover, fitness can some-

times not be measured directly at all. Instead, phenotypes are considered that can be measured and

are believed to approximate fitness well. For instance, antimicrobial drug resistance is the dominat-

ing survival factor for a bacterial population under drug exposure, so that the degree of resistance is

a good substitute measure of fitness. Several such fitness proxies are used in microbiology, including
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survival as measured by disc diffusion tests. Although it is possible to study epistasis of the proxy

data, in general, presence or absence of epistasis in the proxy landscape does not imply presence or

absence of epistasis in the fitness landscape itself.

Experimentally, epistatic interactions have been measured in several genetic systems, including E.

coli (Khan et al., 2011; Weinreich et al., 2006; Poelwijk et al., 2007), HIV-1 (da Silva et al., 2010;

Segal et al., 2004), and other viruses (Wylie and Shakhnovich, 2011; Sanjuán, 2010). These and

similar studies involve the analysis of standing genetic variation or spontaneous mutations

(Bonhoeffer et al., 2004; Bershtein et al., 2006), engineered site-directed mutations

(Sanjuán et al., 2004; Weinreich et al., 2006), and combinations of both (Sanjuán et al., 2005;

Poon and Chao, 2006). Competition experiments are also frequently employed to learn mutational

fitness effects. For example, Sanjuán et al. (2004) studied the distribution of deleterious mutational

effects in RNA viruses using this approach. Such experiments are typically run on single-nucleotide

substitution mutants produced by site-directed mutagenesis. The data produced in competition

experiments is informative about pairwise comparisons of genotypes with respect to their fitness.

However, little is known about whether or not it is possible to learn higher order genetic interactions

from such fitness comparison data.

Due to the rapid growth of the number of possible interactions with the number of loci, all inter-

actions can exhaustively be studied only for a small number of loci. At the human genome scale, for

example, a complete study of only pairwise gene interactions would already require hundreds of mil-

lions of experiments. On the other hand, for smaller organisms, such as yeast, all pairwise and sev-

eral three-way gene interactions have been measured experimentally (Costanzo et al., 2010). Only

when restricting to a small set of preselected loci, can one assess all combinations of mutations and

hence all epistatic interactions. This approach has been pursued, for example, by Weinreich et al.

(2006) for a five-locus system associated with bacterial drug resistance.

Historically, the study of genetic interactions was mostly restricted to pairwise epistasis. Accord-

ing to Crow and Kimura, 1970 (p. 224) higher order interactions were generally believed not to be

significant in nature, with references to Fisher, Haldane, and Wright. More recent arguments for the

same view have been stated in the context of protein folding (Gupta and Adami, 2016). On the

other hand, empirical findings suggest that the opposite is true for many other systems

(Szendro et al., 2013; Neidhart et al., 2013; Sailer and Harms, 2017a). For example,

Weinreich et al. (2013) argue that three-way and four-way interactions can be as strong as pairwise

epistasis referring to various empirical fitness studies, and Knies et al. (2017) find many epistatic

interactions in a numerically near-additive fitness landscape, reducing dramatically the number of

accessible evolutionary trajectories. Although the significance of higher order interactions may vary

between systems, the topic has not been thoroughly investigated. This is partly due to lack of ade-

quate methodology to quantitatively assess the interactions underlying an observed empirical fitness

landscape. Improved mathematical and statistical tools for detecting higher order interactions, as

well as more empirical results, are necessary for more conclusive answers regarding the importance

of higher order interactions.

In this paper, we consider fitness data that comes in the form of pairwise comparisons. Such data

are frequent in practice and can arise in different ways. First, some assays rely on comparing the fit-

ness of two genotypes, for example, by letting them grow in direct competition. Each competition

experiment is informative about which of the two genotypes has higher fitness, without estimating

the fitness values themselves. Second, direct but uncertain fitness measurements are also often sum-

marized as pairwise fitness relations by recording only whether two genotypes displayed significantly

different fitness values or not. Third, rather than fitness itself, a fitness proxy, that is, a phenotype

closely related to fitness, may be considered. Fitness proxies cannot be used directly to measure

epistasis, because they generally do not preserve fitness linearity (Gong et al., 2013), but if proxy

data preserves pairwise comparisons, they may be used instead. Lists of mutants found in a new

environment, such as, for example, a new host for a pathogen or a drug environment can be utilized

similarly. Assuming that the capability to transition to and survive in the new environment is an indi-

cation of higher fitness, this type of observational data also provides pairwise fitness comparisons.

Similarly, the population frequency of genotypes can sometimes be used to draw conclusions about

fitness. For example, by employing a specific model of viral evolution, fitness was inferred computa-

tionally from deep sequencing data of an HIV-1 population, and pairwise credible fitness differences

were reported (Seifert et al., 2015).
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Irrespective of how they were obtained, any consistent set of pairwise fitness relations can be

regarded as a partial order of the genotypes with respect to fitness. Two specific types of partial

orders play important roles for fitness landscapes. First, if comparisons are available for all pairs of

genotypes, then the partial order is a total order, or rank order. In this case, all genotypes are

ordered according to fitness. Second, several studies compare fitness only between mutational

neighbors, that is, genotypes which differ at exactly one locus. The resulting partial orders are

referred to as fitness graphs and have recently been used extensively (Ogbunugafor et al., 2016;

Wu et al., 2016; Smith and Cobey, 2016; Mira et al., 2015).

The question addressed in the present study is whether higher order interactions can be inferred

from rank orders, fitness graphs, and general partial orders. Connections between rank orders and

fitness graphs to epistasis and global properties of fitness landscapes have been observed repeat-

edly (Greene and Crona, 2014; Crona et al., 2013; Poelwijk et al., 2011; Weinreich et al., 2006;

Weinreich et al., 2005). Most recently, Wu et al. (2016) discussed an example of a fitness graph

that implies higher order epistasis. The significance of rank orders of genotypes for epistasis was rec-

ognized by Weinreich et al. (2005). The authors introduced the concept of sign epistasis. By defini-

tion, a system has sign epistasis if the sign of the effect of a mutation, whether positive or negative,

depends on genetic background. Importantly, sign epistasis implies that the rank order of the geno-

types is not compatible with additive fitness. In this paper, we develop a related approach based on

rank orders that applies to higher order epistasis as well as other measures of gene interactions. For

instance, if the rank order of the genotypes implies three-way epistasis for a three-locus system,

then one has a signed variant of three-way epistasis. Similarly, one can consider signed variants of

almost any type of gene interaction. The theory of sign epistasis stands as a model for development

in the area, and there is a potential for understanding global properties of fitness landscapes in

terms of (local) signed interactions, similar to results for sign epistasis.

In addition to the theoretical work mentioned above, rank order arguments have been used for

developing antimicrobial treatment strategies (Smith and Cobey, 2016; Nichol et al., 2015;

Mira et al., 2015; Goulart et al., 2013). However, the full potential of rank order consideration for

the comprehensive analysis of epistatic gene interactions in general n-locus genetic systems has not

been exploited. Furthermore, to the best of our knowledge the general case of arbitrary partial fit-

ness orders has yet to be considered.

Here, we develop quantitative tools to detect any type of gene interactions measured by linear

forms, including epistasis as described by Fourier coefficients, Walsh coefficients, and circuits

(Beerenwinkel et al., 2007; Weinreich et al., 2013). In particular, our approach applies to total n-

way epistasis, conditional epistasis, and marginal epistasis. We used our approach to analyze genetic

interactions in HIV-1, the parasite Plasmodium vivax, the fungus Asbergillus niger, and b-lactamase

antibiotic resistance systems. In all cases, we detect higher order interactions based only on partial

information about the fitness order of genotypes, without knowing or estimating the actual fitness

values.

Results
We consider genetic systems consisting of n biallelic loci. A genotype can then be represented as a

binary string of zeros and ones of length n, where 0 denotes the wild-type allele and 1 the alternative

allele. We assume that fitness is additive in the absence of epistasis. The fitness of a genotype g is

denoted by wg, and we assume that the fitness landscape w is generic in the sense that no two geno-

types have exactly the same fitness.

A complete analysis of all epistatic interactions would require fitness measurements of all 2n gen-

otypes. However, this level of completeness is rarely available in empirical data sets due to experi-

mental design or an infeasible number of genotypes. To address this limitation, we developed

methods that are applicable to partial orders of genotypes according to fitness. For example, the

two fitness relations w01>w00 and w10>w11 together define a partial order. One can always extend a

partial order to a rank order, that is, a total order of the genotypes in the system from highest to

lowest fitness. For example, the total order w10>w11>w01>w00 extends the partial order above. Our

goal is to understand what fitness rank orders and more generally partial fitness orders of genotypes

reveal about gene interactions.
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Two-locus case
We first consider epistasis for a biallelic two-locus population consisting of the unmutated genotype,

or wild type, 00, the two single mutants 01 and 10, and the double mutant 11. In this case, epistasis

is denoted by "2, where the index two refers to the number of loci. It is defined as the deviation

from additivity,

"2 ¼ ðw00þw11Þ� ðw01þw10Þ: (1)

The system has no epistasis if "2 ¼ 0, positive epistasis if "2>0 and negative epistasis if "2<0.

We first assume that the available information on fitness is a rank order of the genotypes (Fig-

ure 1). The rank order is sometimes sufficient for determining that the system has epistasis. For

instance, the rank order w11>w00>w10>w01 (Figure 1 rank order 3), implies w00 þ w11>w01 þ w10, so

"2>0. It follows that the rank order alone allows one to detect positive epistasis without knowledge

of the actual fitness values. There are 24 rank orders of the biallelic two-locus system. Among these,

eight imply positive epistasis, eight imply negative epistasis, and eight do not permit any inference

regarding epistasis. In total two thirds of the rank orders imply epistasis. Each rank order that implies

epistasis also determines the sign of "2 (Figure 1).

Sometimes even a partial order of the genotypes is sufficient for determining that the system has

epistasis. For instance, if we know that w01>w00 and w10>w11, then we can infer that the system has

negative epistasis (Figure 2a). To see this, we consider all rank orders that extend the partial order.

There are six such total extensions, namely rank orders 9, 10, 12, 13, 14, and 16 in Figure 1, and all

imply negative epistasis. We conclude that the partial order implies epistasis, based on only two fit-

ness comparisons and without knowing any of the actual fitness values. This observation holds in

general: If all total extensions imply epistasis then the same is true for the partial order. We will use

this argument repeatedly.

A partial order can also be compatible with several rank orders, some of which might imply epis-

tasis while others do not. In this case, the information is not sufficient to detect epistasis from the

partial order alone. For example, the partial order w00>w01>w10;w11 is compatible with the two rank

orders w00>w01>w11>w10 and w00>w01>w10>w11 (Figure 2b). The first rank order implies positive epis-

tasis, but the other one does not. Consequently, the partial order does not reveal whether or not

the system has epistasis, and further comparisons are needed for a conclusion. A more detailed

treatment of partial fitness orders can be found in Lienkaemper et al. (2017).
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Figure 1. All 24 rank orders of the biallelic two-locus system, where the 16 colored rank orders imply epistasis.

Red (top row) indicates positive epistasis and blue (middle row) negative epistasis.
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Fitness graphs constitute an important sub-

class of partial orders, as they often are the

reported result of experiments, and because of

their relevance for evolutionary processes (Fig-

ure 3). Briefly, the nodes of a fitness graph repre-

sent genotypes and for each pair of mutational

neighbors, that is, genotypes which differ at

exactly one locus, an arrow points toward the

genotype of higher fitness (Section Partial orders

and fitness graphs).

A fitness graph implies epistasis exactly when

all rank orders compatible with the graph do, as

is the case for partial orders in general. For exam-

ple, Figure 3 shows the four fitness graphs where

genotype 00 has lowest fitness in the in the sys-

tem. The graphs (b), (c) and (d) imply epistasis,

whereas (a) is compatible with additive fitness.

A couple of observations from Figure 3 are

useful for determining if a system is compatible

with additive fitness. First, any rank order com-

patible with the graph (a) has the following property: For each genotype, replacing 0 by 1 results in

a genotype of higher fitness. If the genotype 00 has minimal fitness in the system, then rank orders

are compatible with graph (a) exactly if they satisfy this property. The second observation is that a

fitness graph where 00 has minimal fitness is compatible with additive fitness exactly if all arrows

point up. Both observations generalize to any number of loci, and can be phrased in full generality

(one can reduce the general problem to the case when 0 . . . 0 has lowest fitness in the system by a

relabeling argument). In particular, only 384 out of ð23Þ! = 40,320 rank orders are compatible with fit-

ness graphs with all arrows up (after relabeling) for the three-locus system, which we consider next

(Materials and methods, Section Partial orders and fitness graphs).

(a) (b)
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11
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Figure 2. (a) A partial fitness order of genotypes. The

rank orders that extend this partial order are orders (9 ,

10 , 12 , 13 , 14), and (16) in Figure 1. All of them imply

negative epistasis ("2<0). (b) A partial order of

genotypes with all its total extensions shown on the

right. The first extension shown in red implies positive

epistasis ("2>0), while the second one in black does

not.

DOI: https://doi.org/10.7554/eLife.28629.003
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Figure 3. For a biallelic two-locus system where the genotype 00 has the lowest fitness, there are four fitness

graphs. The graph (a) is compatible with additive fitness, whereas the remaining graphs imply negative epistasis.

DOI: https://doi.org/10.7554/eLife.28629.004
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Three-locus case
The biallelic three-locus system consists of the eight genotypes 000, 001, 010, 011, 100, 101, 110, and

111. The system has total three-way epistasis if

"3 ¼ ðw000þw011þw101 þw110Þ� ðw001þw010þw100 þw111Þ 6¼ 0: (2)

For the three-locus system, we distinguish between fitness landscapes with no epistasis (fitness is

additive), with pairwise but not higher order epistasis (fitness is not additive but "3 ¼ 0), and with

three-way epistasis ("3 6¼ 0).

Some rank orders imply three-way epistasis, similar to our observation of epistasis in the two-

locus case. The condition for when a rank order implies three-way epistasis is remarkably simple, and

we demonstrate it with an example. Consider the rank order

w110>w111>w101>w011>w100>w010>w000>w001: (3)

We can represent this rank order by a word in the letters e and o using the following procedure. The

genotype 110 with the highest fitness is represented by e because it has an even number of 1’s, the

genotype 111 with the second highest fitness is represented by o because it has an odd number of

1’s, and so forth. Working from highest to lowest fitness, we obtain the word

eoeeooeo : (4)

If one reads the word letter by letter from left to right, then one has never encountered more o’s

than e’s. This property means that eoeeooeo is a Dyck word (Stanley, 1999).

For a biallelic three-locus system, a rank order implies three-way epistasis exactly if its associated

word (where the role of e and o can be interchanged) is a Dyck word (Proposition 1). This simple rule

allows us to conclude that an empirical system has three-way epistasis. As in the two-locus case, a

landscape may have three-way epistasis even if the rank order does not imply it. For biallelic three-

locus systems, there are in total 40;320 rank orders, of which 16;128 (40%) imply three-way epistasis

(Proposition 1).

Fitness graphs can be analyzed by using our results on rank orders as in the two-locus case. Fig-

ure 4 shows three fitness graphs for three-locus systems. The fitness graph (a) implies three-way

epistasis, the graph (b) pairwise but not higher order epistasis, and the graph (c) is compatible with

additive fitness.

There are in total 1; 862 fitness graphs for the biallelic three-locus system, of which 698 graphs

(37%) imply three-way epistasis. In principle one can check a particular three-locus system for higher

order epistasis using this result. However, it is not convenient to work with a list of over one thou-

sand graphs. In order to make the problem more tractable, we can utilize the fact that some fitness

graphs are isomorphic (Figure 5). There are 54 distinct isomorphism classes of graphs for the three-

(a) 000

001010

011

100

101110

111

(b) 000

001010

011

100

101110

111

(c) 000

001010

011

100

101110

111

Figure 4. The fitness graph (a) implies three way epistasis, the graph (b) implies epistasis, but not higher order

epistasis, and (c) does not imply epistasis, since all arrows point up.

DOI: https://doi.org/10.7554/eLife.28629.005
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locus system, of which 20 imply higher order epistasis (Mathematical framework and proofs, Section

Partial orders and fitness graphs). Consequently, to detect three-way epistasis, one can find the iso-

morphism class and then check 54 graphs, namely one for each isomorphism class (Figure 6 ).

We complete the consideration of the three-locus case by analyzing partial orders. Again, in

favorable cases one can infer three-way epistasis. Indeed, if there exists a partition of all eight geno-

types into four pairs ðge; goÞ, where e and o are as above, and wge>wgo for each pair, then one can

conclude three-way epistasis ( Proposition 7).

General n-locus case
The results on rank orders and higher order epistasis for n ¼ 3 generalize to any number of loci. The

definition of n-way epistasis in an n-locus system is analogous to the three-locus case, as is the condi-

tion for when rank orders imply n-way epistasis. Accordingly, a characterization of rank orders that

imply n-way epistasis can be phrased in terms of Dyck words (Proposition 1). From this result it fol-

lows that the fraction of rank orders that imply n-way epistasis is 2=ð2n�1 þ 1Þ ( Corollary 2) and that

it can be determined in a computationally efficient manner whether or not a rank order implies n-

way epistasis.

Rank order methods are useful for analyzing the total n-way epistasis for an n-locus system, as

demonstrated. However, a single quantity cannot capture all possible gene interactions. Rank order

approaches have the capacity to reveal finer interactions as well.

We start with a general description of gene interactions before exploring what rank orders can

reveal about these interactions. We define an additive dependence relation as a linear form that is

zero on additive fitness landscapes. Interaction coordinates and circuits (Beerenwinkel et al., 2007),

as well as Walsh coefficients of order two or more (Weinreich et al., 2013), are additive dependence

relations. For simplicity, we restrict our analysis to the three-locus system, although the arguments

used are readily extendable to any number of loci n.

First, we consider additive dependence relations that directly correspond to the two-locus case

by fixing one allele at the third locus. For example, if we fix the third locus at 0, then

a¼w000þw110 �w010�w100

measures pairwise epistasis between the first and second locus. Similarly, if we set the third locus to

1, then

b¼w001þw111 �w011�w101

measures pairwise epistasis between the first and second locus.

An example of an additive dependence relation with no correspondence in the two-locus setting

is

m¼w001þw010þw100 �w111� 2w000;

which compares the fitness of the triple mutant 111 to the three single mutants. This expression is

negative if the triple mutant has higher fitness than one would expect based on the fitness effects of

the three single mutations. An example of an additive dependence relation with eight non-zero

terms is

u110 ¼w000 �w100�w010þw001 þw110�w101�w011 þw111:

One can verify that u110 is twice the average of a and b. For a systematic approach to a comprehen-

sive set of gene interactions, one can take advantage of circuits, that is, minimal additive depen-

dence relations. In contrast, u110 is not minimal, because it can be derived from a and b. There are 20

circuits for the three-locus system, including a, b, and m (Mathematical framework and proofs, Sec-

tion Circuits).

The interactions described by a and b are referred to as conditional epistasis, that is, interactions

that measure the total epistasis of subsystems obtained by fixing some loci at 0 or 1. If the interac-

tions a and b differ substantially, it may be important to consider both of them. However, if we are

rather interested in the average interaction for the first two loci over all genetic backgrounds, then

u110 is the right measure.
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In general, relations that measure average effects, such as u110, are referred to as interaction coor-

dinates. The interaction coordinates u110 differs from the Walsh coefficient E110 (Weinreich et al.,

2013) only by a constant scaling factor. Provided that average effects are sufficient for the purpose

of a study, one can analyze higher order epistasis by considering interaction coordinates, or Walsh

coefficients, (Weinreich et al., 2013) (Mathematical framework and proofs).

One interesting class of circuits compares the effect of replacing pairs of loci with different back-

grounds. For instance,

k¼w000�w001�w110 þw111

compares the effect of replacing 00 by 11 if the third coordinate is fixed at 0, versus if the third coor-

dinate is fixed at 1. We refer to k as a circuit measuring marginal epistasis between two pairs of loci

as in Beerenwinkel et al. (2007).

Arguments based on Dyck words can be used for analyzing rank orders and additive dependence

relations in general. The letters are determined by the signs of the coefficients in the linear form, as

for three-way epistasis (Theorem 3).

For each circuit and interaction coordinate, we identify all rank orders that determine its sign. The

characterization is given in terms of general Dyck word conditions. We found that for each interac-

tion coordinate, 2=5 of all rank orders determine its sign; for each circuit corresponding to either

conditional two-way interaction or marginal epistasis between two pairs of loci, 2=3 of all rank orders

determine its sign; and for each circuit relating the three-way interaction to the total two-way epista-

sis, 1=2 of all rank orders determine its sign ( Corollary 4 and 6).

Importantly, if a rank order implies that the sign of an additive dependence relation, such as a cir-

cuit or an interaction coordinates, is determined, then the system has sign epistasis.

One can ask if it possible to decompose the word obtained for analyzing n-way epistasis into sub-

units, so as to learn about circuits or properties for subsystems of the genotypes. In general, no such

decompositions are possible unless one has information in addition to the word itself. For instance,

suppose that a rank order is mapped to ooeeeooe. The first half of the word, namely ooee, does not

necessarily reveal any interesting information about the system. (Mathematical framework and

proofs, Section Circuits).

The signs of all twenty circuits determines the polyhedral shape of the fitness landscape

(Beerenwinkel et al., 2007). The shape combines the circuit information into a more manageable

object. However, no rank order determines a shape for n ¼ 3 (Mathematical framework and proofs,

Section Circuits).

Our tools for detecting gene interactions work for total n-way epistasis, interaction coordinates

and circuits. Moreover, our approach applies to any type of gene interaction that can be expressed

by a linear form (Theorem 3), such as Fourier coefficients (Beerenwinkel et al., 2007) and Walsh

coefficients (Weinreich et al., 2013). We have implemented algorithms for detecting the gene inter-

actions described in this section, both for rank orders and partial orders, specifically, algorithms for

n-way epistasis, three-way and four-way interaction coordinates, and three-way circuit interactions

(https://github.com/gavruskin/fitlands#fitlands). The most computationally demanding task of our

algorithms is reading the rank order from disk. The run time complexity is proportional to the num-

ber of non-zero coefficients in the linear form.

Analysis of empirical fitness data
As proof of principle, we applied our tools to fitness data from a diverse set of biological systems,

ranging from HIV-1 (Segal et al., 2004), malaria (Ogbunugafor and Hartl, 2016), antibiotic resis-

tance (Mira et al., 2015), to the fungus Aspergillus Niger (Franke et al., 2011). Our approach

reveals higher order epistasis for all of these systems, only by considering rank orders and partial

orders of genotypes, without the need to access direct fitness measurements or estimates.

Our first application is to the HIV-1 data published by Segal et al., 2004. Following

Beerenwinkel et al. (2007), we consider the three-locus biallelic system that consists of the muta-

tion L90M in the protease and mutations M184V and T215Y in the reverse transcriptase of HIV-1. Fit-

ness was measured as the number of offspring in a single replication cycle of the virus in the original

study, and was reported relative to the wild-type strain NL4-3 on a logarithmic scale. The data con-

sist of 288 fitness measurements, including between 5 and 214 replicates per genotype.
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The following rank order was obtained by comparing the mean fitness of the eight genotypes:

w000>w100>w011>w110>w101>w001>w010>w111;

where 000 corresponds to the sequence of amino acids LMT and 111 to MVY comprising the three

selected loci. This rank order implies positive three-way epistasis because the associated word

eoeeeooo

is a Dyck word. It follows that the three mutations under consideration together have a stronger

effect on fitness than one would predict from single and double mutants. A closer inspection of the

word reveals more information. If we swap any two adjacent letters in the word, then we still have a

Dyck word, with the single exception of the first two letters. In other words, only one pair of adja-

cent genotypes in the rank order, namely 000 and 100, could violate the conclusion if transposed.

If the experiment was to continue, our analysis could be used to direct the data collection pro-

cess. Indeed, the argument above suggests that the position of the genotype 100 may violate the

conclusion of positive three-way epistasis. To quantify the uncertainty in the ranking of 100 with

respect to the wild type 000, we employed the Wilcoxon rank sum test on the replicate fitness meas-

urements. The p-value of the test is 0:47 for the relation w000>w100, which implies considerable uncer-

tainty and justifies our recommendation of further experiments to clarify the position of 100.

Importantly, the suggested experiment reduces the number of measurements required to make a

more robust conclusion about epistasis considerably, namely to one out of 28 possible comparisons.

We proceeded by considering other types of gene interactions in this data set. When considering

all 20 circuits, the rank order implies interactions for 55% of the circuits, with positive sign for 30%

and negative for 25% of the circuits. This result is consistent with the conventional statistical

approaches that use direct fitness measurements. Indeed, since the empirical study of Segal et al.,

2004 provided multiple fitness measurements of each genotype, it was possible to compare our

conclusion based on rank orders with statistical tests based on fitness estimates.

The results for fitness measurements were confirmed by the conventional Wilcoxon rank sum test.

We computed interaction coordinates and circuit interactions for the summary statistics reported in

(Beerenwinkel et al., 2007). Figure 7 shows that our rank order methods detected the majority of

circuit interactions identified by using the summary statistics. Specifically, both approaches detected

three-way epistasis. Furthermore, 11 of the 20 circuit interactions have been detected by our method

and confirmed by Wilcoxon rank sum test.

We also applied Student’s t-test to detect interactions and quantify the significance of the esti-

mates. In addition to the 11 interactions, the t-test found 6 circuit interactions as significant (Table 2).

We emphasize that the rank order approach required much less information to arrive at the same

conclusions, thus demonstrating the power of the method.

We conclude that the three sites in the HIV-1 genome under consideration are prone to a diverse

set of interactions. Specifically, the strong support for the three-way epistasis, along with the 55% of

informative circuit interactions, imply that the three loci together interact in a complex manner,

meaning that the interactions cannot be explained using pairwise interactions alone. Thus, in this

data set, higher order interactions have a strong impact on the fitness landscape.

Our second application is to a study of antimicrobial drug resistance in malaria

(Ogbunugafor and Hartl, 2016). The authors measured growth rates for several mutants of Plasmo-

dium vivax under exposure to the antimalarial drug pyrimethamine. We identified higher order epis-

tasis by analyzing rank orders. More precisely, we considered a three-locus sub-system of the study

that consists of mutations N50I, S58R, and S117N, in the context of T173L, a fixed mutation, under

nine different concentrations of pyrimethamine. The genotypes comprising positions 50, 58, and 117

are labeled 000 (NSS), 100, 010, 001, 110, 101, 011, and 111 (IRN). The three highest concentrations of

the drug resulted in the following rank orders:

w111>w011>w001>w101>w010>w100>w110>w000

w111>w011>w001>w010>w100>w101>w110>w000

w111>w011>w010>w001>w100>w110>w101>w000:

The corresponding words are oeoeooee for the first rank order, obtained under the highest
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concentration of the drug, and oeoooeee for the second and third rank orders. Since we obtain Dyck

words in all cases, the system has negative three-way epistasis for the three highest concentrations

of the drug. This consistency among pyrimethamine concentrations shows that the result is robust.

Using our software, we also analyzed all interaction coordinates for this data set (https://github.

com/gavruskin/fitlands/blob/master/Four-way_interaction_coordinates_and_total_n-way_interaction.

ipynb). Our analysis revealed that for the two highest concentrations of the drug, the rank order

implies that the interaction coordinate denoted u0111(Mathematical framework and proofs) is

negative.

Next, we applied our tools to a study of the TEM-family of b-lactamase, associated with antibiotic

resistance (Mira et al., 2015). The study measured growth rates for 16 genotypes exposed to 15 dif-

ferent antibiotics. Specifically, all 16 genotypes that combine subsets of the four amino acid substitu-

tions M69L, E104K, G238S, N276D found in TEM-50, including eight known enzymes, were created

using site-directed mutagenesis. We considered the fitness graph obtained when the system was

exposed to the antibiotic FEP Cefepime at a concentration of 0:0156 �g/ml (Figure 8). The fitness

graph implies higher order epistasis (Proposition 7), that is, the fitness of TEM-50 cannot be

Figure 5. Interactions detected from fitness summary statistics and from rank orders. The horizontal axis is labeled by the four interaction coordinates

u110, . . ., u111 and twenty circuits a, . . ., t. The boxplots show the distributions of the various interactions induced by the empirical fitness distribution.

The red star indicates whether the interaction has been detected by our rank order method. Specifically, a star with vertical coordinate �1, 0, and one

means negative, no, and positive interaction, respectively.

DOI: https://doi.org/10.7554/eLife.28629.006
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predicted even with complete knowledge of the fitness values of the remaining genotypes in the sys-

tem. The fitness graphs for the other 14 antibiotics do not share this property. We conclude that

even though some of the single and triple mutants confer low antibiotic resistance, a large popula-

tion of triple mutants alone is more prone to become antibiotic resistant due to the epistatic fitness

advantage of TEM-50, as compared to a setting with no higher order epistasis.

Finally, we investigated a study of the filamentous fungus Aspergillus Niger (Franke et al., 2011).

We considered a system consisting of the wild type and all combinations of the four individually del-

eterious mutations fwnA1, leuA1, oliC2 and crnB12 (Figure 9). Fitness was estimated with two-fold

replication by measuring the linear mycelium growth rate in the original study. The fitness graph

implies higher order epistasis (Proposition 7).

All four arrows incident to 0000 point towards the genotype, so that the genotype 0000 is a peak

in the landscape. The same is true for the genotypes 1100, 0011, and 1001. Because of the four

peaks, it is possible that the fungus population gets stranded at a suboptimal peak during the

course of evolution (we do not necessarily assume that the starting point for an evolutionary process

is at 0000). In contrast, an additive fitness landscape is single peaked. This example illustrates that

epistasis may have an impact on the evolutionary dynamics. Several peaks can make the evolutionary

process less predictable, depending also on other factors such as population size, mutation rate,

etc. More generally, for three-locus fitness graphs, we analyzed the impact of higher order epistasis

versus only pairwise epistasis systematically. We found that higher order epistasis correlates with

more peaks as well as other features that can lead to involved evolutionary dynamics (Mathematical

framework and proofs, Section Graph theoretical aspects).

0110(TEM-15)1001(TEM-35)0101 1010 1100

1000(TEM-33)0100(TEM-17)0010(TEM-19)0001(TEM-84)

1110110110110111

0011

0000(TEM-1)

1111(TEM-50)

Figure 6. The TEM-family of b-lactamase contributes to antibiotic resistance problems in hospitals. The fitness graph shows a four-locus system

consisting of the wild type, TEM-1, the quadruple mutant, TEM-50, and all intermediate mutants, including six clinically found mutants in the TEM

family. The mutation M69L corresponds to 1000, E104K to 0100, G238S to 0010, and N276D to 0001. Growth rates were measured for the 16 genotypes

under exposure to the antibiotic FEP Cefepime, and the fitness graph was determined accordingly (Mira et al., 2015). The graph reveals higher order

epistasis.

DOI: https://doi.org/10.7554/eLife.28629.007
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We completed our analysis of this data set by considering the 5-locus system of mutations fwnA1,

argH12, pyrA5, leuA1, and pheA1, conditioning on mutations lysD25, oliC2, and crnB12 all being

absent. The original study does not contain any measurements for the two genotypes 11010 and

10111. Furthermore, two pairs of genotypes in the system have identical ranks, namely

ð11000; 10010Þ and ð10011; 11101Þ. We obtained the following word for the total five-way epistasis

u11111,

eeoeexxooooeoooeoyyeeeoeoeoeoo

where the two x’s correspond to genotypes 11000 and 10010, the y’s to 10011 and 11101, and two let-

ters are missing. Whether one can draw conclusions about five-way epistasis or not, depends on the

positions of the two missing genotypes, as well as the genotypes represented by y’s, whereas it is

independent of the genotypes represented by x’s. Specifically, if genotype 11101 has higher fitness

than 10011, genotype 10111 has rank between 1 and 15, and genotype 11010 has rank between 20

and 32, then the resulting rank order implies positive five-way epistasis, that is, u11111>0, for both

possible options to resolve the ranking of genotypes 11000 and 10010 (Table 3).

Discussion
Gene interactions play a critical role in evolutionary processes. Important features of fitness land-

scapes, such as the number of peaks, and accessible evolutionary trajectories, depend on epistatic

gene interactions. The importance of higher order versus pairwise epistasis, within and among genes

or in non-coding regions, as well as the impact of higher order epistasis on evolutionary dynamics,

remains a central research topic (Sailer and Harms, 2017b; Wu et al., 2016; Weinreich et al.,

2013). Progress in all of these areas requires adequate mathematical and statistical approaches, in

addition to empirical studies.

011010010101 1010 1100

1000010000100001

1110110110110111

0011

0000

1111

Figure 7. The fitness graph shows a four-locus system for the filamentous fungus Aspergillus Niger. The system consists of all combinations of the four

individually deleteriouis mutations fwnA1, leuA1, oliC2 and crnB12. The landscape has in total four peaks, labeled 0000; 1100; 0011 and 1001.

DOI: https://doi.org/10.7554/eLife.28629.008
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Here, we have developed new quantitative tools for detecting gene interactions from empirical

data. The main advantage of our tools is that they can reveal gene interactions from the types of

data frequently generated in empirical studies, specifically rank orders, fitness graphs, and general

partial orders of genotypes. The reasons why, in practice, these types of data are available more

often than precise fitness measurements for each genotype are manifold. They include restricted

comparative experimental designs and known and unknown confounding factors in measuring fitness

that can result in uncertain and biased estimates. The methods presented here allow for studying

epistatic interactions even when direct fitness measurements are lacking or only a subset of pairwise

fitness comparisons is available, either as the immediate outcome of the experiment or the reported

summary.

We provide a complete characterization of rank orders that imply higher order epistasis, along

with precise results for fitness graphs of three-locus systems. In principle, our approach applies to

general partial orders as well, and we have implemented algorithms accordingly. However, because

of the increasing computational complexity it would be desirable to have theoretical results for han-

dling large systems. In particular, a characterization of fitness graphs that imply higher order epista-

sis is of independent mathematical interest.

111

101 110011

010 100001

000

Figure 8. The fitness graph is compatible with the two rank orders (5) and (6).

DOI: https://doi.org/10.7554/eLife.28629.009
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Figure 9. An example of an isomorphism. Here, the allele labels ‘0’ and ‘1’ in the first locus have been

interchanged, as well as the second and third loci.
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Figure 10. All 54 fitness graph types. Those depicted in red imply three-way epistasis.

DOI: https://doi.org/10.7554/eLife.28629.012
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We found that for biallelic three-locus systems, 40% of all possible rank orders and 37% of all pos-

sible fitness graphs imply higher order epistasis. These fractions suggest that our methods have a

good capacity to detect higher order epistasis among three loci, even if exact and complete fitness

measurements or estimates are not available.

The fraction of rank orders that imply n-way epistasis decreases rapidly with increasing number of

loci, n. However, many rank orders are informative regarding other additive dependence relations,

for instance some circuits measuring conditional epistasis. This is clear from the observation that the

proportion of rank orders that are compatible with additive fitness decreases rapidly with n.

Moreover, the power of our methods was demonstrated for a diverse set of biological systems.

We detected higher order epistasis for HIV, malaria, the fungus Aspergillus Niger, and antibiotic

resistance systems. Our findings suggest that genetic interactions beyond two-way epistasis shape

the fitness landscapes of these genetic systems and may play an important role in determining their

evolutionary trajectories. We also exhaustively investigated various types of higher order interactions

in HIV-1 and discovered a complex pattern of interactions, confirming that our approach is powerful

enough to detect finer gene interactions. Specifically, we identified over twenty interactions by con-

ventional approaches, and rank order methods detected about half of them.

Another important application of our method is to experimental design. When the information

available in the data does not contradict an interaction, but is not conclusive enough to claim the

interaction, for example because the number of performed competition experiments is too small,

then the method allows for prioritizing further experiments by suggesting additional comparisons of

genotypes. This feature may prove useful in guiding fitness experiments that aim for testing specific

interactions and allow for iteration. We have developed this idea further in Lienkaemper et al.

(2017), where we consider partial fitness orders of genotypes and develop efficient algorithms to

detect genetic interactions, as well as study the geometry of such partial orders. Evolutionary

aspects of partial orders and gene interactions are studied in Crona and Luo, 2017.

Genetic interactions, especially those of higher order, are particularly difficult to detect in high-

dimensional systems, where complete fitness measurements of all genotypes are infeasible. Human

genome-wide association studies (GWAS) are a prime example. Here, already the number of loci, n,

and certainly the number of possible genotypes, 2n, is much larger than the actual number of geno-

typed and phenotyped individuals, even if the genotype data is summarized on the level of genes or

haplotype blocks. Since most diseases are polygenic, rather than monogenic, genetic interactions

play an important role, and accounting for them may explain some of the missing heritability and

improve genetic disease models. Several methods have been proposed for detecting pairwise inter-

actions in GWAS, most of them relying on scanning all or a prioritized subset of pairs of loci

(Wei et al., 2014), but little is known about higher order interactions in these landscapes.

The methods presented in the present study may help addressing this challenge as they can

sometimes reveal higher order interactions from a small number of comparisons, and the choice of

genotypes to compare can be optimized if particular interactions are to be tested. Another advan-

tage is the flexibility of our approach regarding the type of epistatic interaction analyzed. While we

have focused on analyzing complete genetic systems, that is, n-dimensional hypercubes, for small

values of n in this work, genotype spaces consisting of subsets of the 2
n possible genotypes have dif-

ferent sets of interactions, such as circuits, that are natural to consider. Towards this end,

Huggins et al. (2007) have explored circuits and their sign patterns for genotype data from the

HapMap project in two ENCODE regions. The Dyck word approach will be particularly useful if

quantitative data on the phenotype is difficult to obtain, but rank order information is more accessi-

ble, for example by considering disease indicators, rather than the condition itself.

For a more theoretical perspective, we emphasize the distinction between rank order-induced

gene interactions, and interactions that do not change the rank order of genotypes. This distinction

was pointed out by Weinreich et al., 2005 who introduced the term sign epistasis. If a system has

sign epistasis, then the rank order of the genotypes is not compatible with additive fitness. Rank

order-induced gene interactions of any type can thus be regarded as analogues to sign epistasis.

There exist a number of possible ways to quantify and interpret higher order interactions

(Weinreich et al., 2013; Beerenwinkel et al., 2007; Hallgrı́msdóttir and Yuster, 2008), and our

rank order approach applies to any type of gene interactions measured by linear forms. In particular,

we can detect interactions as described by Fourier coefficients and Walsh coefficients. From our gen-

eral argument based on Dyck words we investigated three-locus systems, and determined the

Crona et al. eLife 2017;6:e28629. DOI: https://doi.org/10.7554/eLife.28629 15 of 28

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.28629


number of rank orders that imply circuit interactions, including conditional and marginal epistasis,

and similarly for interactions coordinates. The method works equally well for other interactions.

Further investigation of rank order-induced interaction has the potential to relate global and local

properties of fitness landscapes, similarly to results on sign epistasis (Weinreich et al., 2005;

Poelwijk et al., 2011; Crona et al., 2013). Global properties concern peaks and mutational trajecto-

ries in the fitness landscape, whereas local properties concern, for instance, fitness graphs for small

system. The relation between global and local properties is important since only local properties can

be easily observed in experiments or nature.

A very useful feature of sign epistasis is that one can identify, or rule out, sign epistasis in a sys-

tem from inspection of two-locus subsystems only. The theoretical significance and applicability of

sign epistasis depends on its local nature. Fortunately, the signed versions of other gene interactions

are sometimes local as well. For instance, it seems plausible that the absence of rank order induced

conditional epistasis of specified orders (a local property) correlates with few peaks and good peak

accessibility. In this spirit we explore some evolutionary consequences of higher order epistasis in

Crona and Luo, 2017. Theory for sign epistasis stands as a model for further development in this

area.

Although we have applied our method here only to fitness, any other continuous phenotype of

interest can be analyzed in exactly the same manner. The fitness landscape w is then replaced by a

more general genotype-to-phenotype map. For example, rather than using it as a fitness proxy, one

may be concerned about the drug resistance phenotype itself and its genetic architecture.

In summary, rank order methods have potential for the interpretation of empirical data, as well as

for relating higher order gene interactions and evolutionary dynamics. Our approach facilitates

detecting higher order epistasis from a very broad range of empirical data, and will therefore con-

tribute to enhancing our general understanding of empirical fitness landscapes and epistatic gene

interactions.

Materials and methods

Mathematical framework and proofs
Here we provide proofs for the results in the main text, and give a brief background on the discrete

Fourier transform, Dyck words, and Catalan numbers. Catalan numbers (Stanley, 1999) have rarely

been used in biology, so we describe them briefly without assuming any knowledge. Several argu-

ments in the Materials and methods depend on elementary combinatorics, and the reader may con-

sult a general text, such as Grimaldi (2006).

We start with rank orders and the total n-way epistasis, followed by more general results on rank

orders, circuits and other linear forms. The next topic is epistasis and fitness graphs, including some

related graph theory. Finally we provide a few observations on epistasis and partial orders.

Gene interactions for a biallelic n-locus system can be described in terms of the Fourier transform

for ðZ2Þ
n defined as

ui1i2...in ¼
1

2n�1
�
X1

j1¼0

X1

j2¼0

� � �
X1

jn¼0

ð�1Þi1j1þi2j2þ...þinjn wj1j2...jn :

By abuse of notation we will ignore the scaling factor 1

2n�1 : We define interaction coordinates as the

elements ui1i2...in such that at least two entries in i1i2 . . . in are 1. The interaction coordinate u1...1 meas-

ures the total n-way epistasis,

u1...1 ¼
X1

j1¼0

X1

j2¼0

� � �
X1

jn¼0

ð�1Þj1þj2þ...þjn wj1 j2...jn :

In particular,

u11 ¼w00 �w10 �w01þw11 ¼ "2

and
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u111 ¼w000�w100 �w010 �w001þw110 þw101 þw011�w111 ¼ "3

as defined in Equations 1 and 2 in the main text. A biallelic three-locus system has three-way epista-

sis exactly if u111 6¼ 0. Otherwise the system has only pairwise interactions. Similarly, a biallelic n-locus

system has (total) n-way epistasis exactly if u1...1 6¼ 0.

The remaining interaction coordinates of the three-locus system are

u110 ¼w000 �w100�w010þw001 þw110�w101�w011 þw111;

u101 ¼w000 �w100þw010�w001 �w110þw101�w011 þw111;

u011 ¼w000 þw100�w010�w001 �w110�w101þw011 þw111:

Weinreich et al. (2013) characterize epistatic interactions using Walsh coefficients, which are closely

related to interaction coordinates. Specifically, the Walsh coefficients E111, E110, E101, E011 differ from

the interaction coordinates u111, u110, u101, u011 only by a scalar. Here we ignore scalars, since we

focus on the signs of the interactions coordinates only. It follows that all our results on interaction

coordinates hold for Walsh coefficients as well.

Rank orders
We will determine the number of rank orders which imply n-way epistasis. The proof depends on

Catalan numbers and Dyck words (Stanley, 1999). Let Ci denote the i
th Catalan number for i � 0,

that is, Ci ¼
ð2iÞ!

ðiþ1Þ!i!. In particular, C0 ¼ C1 ¼ 1;C2 ¼ 5, C3 ¼ 14 and C4 ¼ 42. A Dyck word of length 2n

in the letters X and Y is a string consisting of nX’s and n Y’s such that no initial segment of the string

has more Y’s than X’s. For instance, the Dyck words of length 4 are XXYY and XYXY . The initial seg-

ments of XXYY are X, XX, XXY, and XXYY .

Proposition 1. Consider a biallelic n-locus system. The number of rank orders which imply n-way

epistasis is

ð2nÞ!� 2

2n�1 þ 1

Proof. There are ð2nÞ! rank orders in total. Let ei denote the fitnesses of genotypes with an even

number of 1’s in the subscripts (w0...0, w110...0, and so forth) and oi the fitnesses of genotypes with an

odd number of 1’s, ordered in such a way that ei>eiþ1 and oi>oiþ1 for all i. We will refer to even and

odd elements from now on. Let u1...1 denote the interaction coordinate as defined above. Notice

that u1...1 ¼ 0 exactly if
P

i ei�
P

i oi ¼ 0. Consequently a rank order implies positive n-way epistasis

(u1...1>0) when the sum
P

i ei� oið Þ is positive for all fitness landscapes compatible with the rank

order. It is therefore sufficient to count such rank orders.

We define a map from fitness rank orders to words in the alphabet fe; og as follows: ei 7!e; oi 7!o.

For instance, the order w00>w11>w10>w01 is mapped to eeoo. We claim that a rank order satisfiesP
i ei � oið Þ>0 exactly when it is mapped to a Dyck word (where e precedes o).

It is immediate that
P

i ei � oið Þ>0 holds if the rank order is mapped to a Dyck word. Conversely,

suppose that a rank order is not mapped to a Dyck word. Let s be the least number such that the

number of o’s exceeds the number of e’s for an initial segment of length s (note that s has to be odd

in this case) and let j ¼ sþ1

2
. Clearly one can make the sum of

Pj
i¼1

ei � oið Þ negative for a particular

choice of ei and oi. By choosing the remaining numbers ei; oi sufficiently small, we get
P

i ei � oið Þ<0,

which proves the claim.

Table 1. Numbers and fractions of rank orders that imply n-way epistasis.

Loci Rank orders Imply epistasis Fraction

2 24 16 2=3

3 40,320 16,128 2=5

4 20,922,789,890,000 4,649,508,864,000 2=9

DOI: https://doi.org/10.7554/eLife.28629.011
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It remains to count the rank orders where
P

i ei � oið Þ>0. Such rank orders are mapped to Dyck

words (where e precedes o) consisting of 2n�1 X’s and 2
n�1 Y’s. There are C2n�1 such Dyck words (Stan-

ley, 1999). For each word there are ð2n�1Þ!� ð2n�1Þ! fitness rank orders which map to the word.

Indeed, one can choose the ordering of even and odd elements each in ð2n�1Þ! different ways.

In total there are C2n�1 � ð2n�1Þ!� ð2n�1Þ! fitness rank orders such that
P

i ei � oið Þ>0 for all land-

scapes. By symmetry, the same number of fitness rank orders satisfy the negative epistasis conditionP
i ei � oið Þ<0. One verifies that

C2n�1 �ð2n�1Þ!�ð2n�1Þ!� 2¼
ð2nÞ!� 2

ð2n�1 þ 1Þ
;

which completes the proof.□

A few observations in the proof of Proposition 1 are of interest. Importantly, the proof gives a

computationally efficient method (linear in the number of genotypes) for checking if a rank order

implies n-way epistasis. Indeed, the rank order implies higher order epistasis exactly if it is mapped

to a Dyck word. Moreover, the proposition states that ð2nÞ!�2

ð2n�1þ1Þ orders imply n-way epistasis. From the

proof it is clear that half of these orders imply positive n-way epistasis (u1...1>0) and the other half

negative n-way epistasis (u1...1<0). Also, the proof points out some symmetries. If a rank order implies

epistasis, then the same is true for rank orders obtained by (i) any permutation of the even elements,

(ii) any permutation of the odd elements, and (iii) the flip obtained by replacing every “<” by “>” in

the rank order. It follows that each rank order that implies three-way epistasis belongs to a class of

1152 elements, which differ by the operations (i)–(iii) only.

Corollary 2. The fraction of rank orders that imply n-way epistasis among all rank orders is

2

2n�1þ 1
:

Proof. Since the number of all rank orders is ð2nÞ!, the result follows. □

The results on rank orders and epistasis for 2 � n � 4 are summarized in Table 1. Notice that the

expression in the corollary approaches 1

2n�2 for large n.

Interestingly, no integer sequence that starts with 16, 16 128, . . . is available at The On-Line Ency-

clopedia of Integer Sequences (2016).

Circuits
The proof of Proposition 1 depends on the map defined from the rank orders to words in the alpha-

bet fe; og. We will use a generalization of the map in subsequent proofs. The starting point is a given

linear form. The form determines a map from rank orders to words. Although the idea is closely

related to the previous proof, we will work with positive and negative coefficients in the linear forms.

For that reason, we will use P and N rather than e and o (even and odd is no longer meaningful).

We start with a clarifying example. Assume that a given linear form has integer coefficients and

that the sum of its coefficients is zero. For instance, the form

m¼w001 þw010 þw100�w111 � 2w000

defines a map ’m as follows: Each of the variables w001;w010;w100 corresponds to the letter P (for pos-

itive), and the variable w111 corresponds to N (for negative). The variable w000 corresponds to NN,

because of the coefficient �2. In this case, the rank order

w111>w001>w000>w100>w010>w110>w101>w011

is mapped to NPNNPP under ’m. Specifically, starting from left w111 corresponds to N, w001 to P, w000

to NN, w100 to P, and w100 to P. The remaining variables w110;w101;w011 do not impact the word, since

their coefficients are zero for the form m.

Definition 1. Let f be a linear form with integer coefficients. Assume that the sum of its coeffi-

cients is zero. Let ’f denote the map from a total order on the variables (a rank order) to words in

the alphabet fP;Ng defined as follows: Each variable of f with a positive integer coefficient c corre-

sponds to a substring of c letters P. Each variable in f with a negative integer coefficient c0 corre-

sponds to a substring of jc0j letters N. A rank order of the variables is mapped to the word
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consisting of the substrings obtained for each variable with non-zero coefficient in f . Specifically, the

substrings (from left to right) of the word correspond to the variables in the rank order (from highest

to lowest fitness).

The proof of Proposition 1 uses e and o instead of P and N. However, notice that the map from

rank orders to words in e’s and o’s is exactly ’u1...1 (modulo the labeling). The next result is a generali-

zation of Proposition 1. The proof is similar in every step with the modification that ’u1...1 is replaced

by ’f for an arbitrary form f , so we omit the details.

Theorem 3. Let f be a linear form with integer coefficients. Assume that the sum of its coefficients

is zero. Then a rank order implies that f is not zero if and only if it is mapped to a Dyck word by ’f .

We define additive dependence relations as linear forms that are zero for all additive landscapes.

Theorem 3 applies to all additive dependence relations, because the coefficients of an additive

dependence relation sum to zero. This fact explains why our Dyck word-based method applies

broadly. All we require is that an epistasis measure is defined by linear forms, as any such measure is

zero on additive fitness landscapes. In particular, Theorem 1 applies to n-way epistasis, interaction

coordinates, and circuits. However, some approaches to epistasis are of a completely different type,

for instance the approach based on Shannon entropy (Moore et al., 2006), in which case rank order

methods may not apply.

Recall from the main text that a ¼ w000 � w010 � w100 þ w110 is a circuit. In particular, a ¼ 0 for all

additive fitness landscapes. Moreover, a is minimal with this property, in the sense that no linear

form in a proper subset of fw000, w010, w100, w110g equals zero for all additive landscapes. In general,

circuits are defined as minimal (additive) dependence relations, in the sense that the set of wg which

appear with non-zero coefficient is minimal with respect to inclusion.

There are 20 circuits a; . . . ; t for the three-locus system (Beerenwinkel et al., 2007), namely

a :¼w000�w010�w100 þw110

b :¼w001�w011�w101 þw111

c :¼w000�w001�w100 þw101

d :¼w010�w011�w110 þw111

e :¼w000�w001�w010 þw011

f :¼w100�w101�w110 þw111

g :¼w000�w011�w100 þw111

h :¼w001�w010�w101 þw110

i :¼w000�w010�w101 þw111

j :¼w001�w011�w100 þw110

k :¼w000�w001�w110 þw111

l :¼w010�w011�w100 þw101

m :¼w001þw010þw100 �w111� 2w000

n :¼w011þw101þw110 �w000� 2w111

o :¼w010þw100þw111 �w001� 2w110

p :¼w000þw011þw101 �w110� 2w001

q :¼w001þw100þw111 �w010� 2w101

r :¼w000þw011þw110 �w101� 2w010

s :¼w000þw101þw110 �w011� 2w100

t :¼w001þw010þw111 �w100� 2w011

Before describing applications of Theorem 3 in more detail, we will compare different approaches

to epistasis. As already noted, interaction coordinates (Beerenwinkel et al., 2007) and Walsh coeffi-

cients of order two or more (Weinreich et al., 2013) differ only by a scalar. However, circuits provide

information of a different type. To see this, we consider the two circuits

a¼w000�w010 �w100þw110

b¼w001�w011 �w101þw111

which measure epistasis between the first and the second locus conditional on the third locus being
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fixed to 0 and 1, respectively. If a¼�b for a system, then u110 ¼ 0 (and the Walsh coefficient E110 ¼ 0

as well), because u110 ¼ aþ b. If, in addition, jaj ¼ jbj is a large number, then the first and second loci

have substantial interactions as measured by a and b, yet the interaction coordinate u110 captures

only the average effect which is zero and would indicate no interaction.

Even if one knows the signs of all interaction coordinates u111, u110, u101, and u011, one may still be

ignorant about important gene interactions. In contrast, the signs of all 20 circuits provide a more

complete description of the gene interactions from a qualitative point of view. In this sense, it is nat-

ural to say that two fitness landscapes have similar gene interactions if their circuit sign patterns

agree.

One type of circuits measures conditional epistasis, and they relate to interaction coordinates in

an interesting way. More precisely, conditional epistasis concerns subsystem obtained by fixing a

subset of coordinates at 0 or 1 and varying the remaining loci. Conditional epistasis for an n-locus

subsystem agrees with the total n-way epistasis for the subsystem. In particular, the circuits a and b

measure conditional epistasis. The circuit a measures epistasis for the two-locus subsystem of geno-

types with last coordinate 0, and the circuit b measures epistasis for the two-locus subsystem of gen-

otypes with last coordinate at 1. As mentioned, the interaction coordinate u110 is the average of a

and b (modulo a constant).

The relation between interaction coordinates and circuits is similar for larger systems. For

instance, the circuit

w0000�w0100�w1000þw1100;

measures conditional epistasis for the two-locus subsystem obtained by fixing the last two coordi-

nates at zero. The interaction coordinate u1100 measures the average effect of four different circuits

that measure conditional epistasis. In summary, all interaction coordinates can be interpreted as

averages of circuits expressing conditional epistasis.

Technically, the 20 circuits can be obtained as linear combinations of the interaction coordinates

u111, u110, u101, and u011. However, none of the interaction coordinates are themselves circuits, since

they do not satisfy the condition of being minimal.

The circuits a; . . . ; f all measure conditional two-way epistasis between two loci when the allele at

the third locus is fixed. But there are other types of circuits. The circuits g; . . . ; l relate marginal epis-

tasis of two pairs of loci, and the circuits m; . . . ; t relate the three-way interaction to the total two-

way epistasis (Beerenwinkel et al., 2007).

For a given circuit, some rank orders imply that the circuit is positive, that is, the circuit is positive

for all fitness values compatible with the rank order. Similarly, some rank orders imply that the circuit

is negative, whereas the sign cannot be determined from other rank orders. We will use Theorem 3

to check whether a rank order determines the sign of a circuit or not.

Corollary 4. For the circuits a; . . . l, two thirds of all possible rank orders determine the sign of the

circuit. For the circuits m; . . . ; t, one half of all possible rank orders determine the sign of the circuit.

Proof. Fix one of the circuits from a to l and a rank order. The circuit has exactly four variables

with non-zero coefficients (for instance, for the circuit a the variables are w000, w100, w010, w110, so that

’a maps rank orders to four-letter words). By Theorem 3, the rank order implies that the circuit dif-

fers from zero when it is mapped to one of the Dyck words PPNN, PNPN, NNPP or NPNP under ’,

whereas the sign of the circuit is not determined when the word is PNNP or NPPN. One concludes

that the sign of a given circuit from a to l is determined for 2=3 of the rank orders.

Using a similar argument, we consider words of length 6 for the circuits labeled m to t. There are

in total 20 words consisting of 3P’s and 3N’s. Ten of them are Dyck words. We conclude that the

sign of a given circuit from m to t is determined for 1=2 of the rank orders. □

In general, it is not possible to decompose the word obtained for analyzing n-way epistasis into

informative subunits. For example, as mentioned in the main text, the first half of the word ooeeeooe

is ooee, and it does not appear to reveal any interesting information about the system. On the other

hand, if one knows that the word ooeeeooe was obtained from the rank order

w010>w111>w110>w101>w011>w100>w001>w000;

then one can identify meaningful parts of the word. For instance, consider the subsystem of geno-

types with last coordinate 0. The corresponding letters (the first, third, sixth and eighth letter of the
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word ooeeeooe) form the four-letter word oeoe, which implies that the corresponding subsystem has

sign epistasis. Moreover, there is no connection between words used for analyzing three-way epista-

sis and the words representing Walsh-coefficients. For instance, in order to analyze u110 one maps

the rank order above to NPPNNNPP, but the two words ooeeeooe and NPPNNNPP are unrelated.

The gene interactions for a biallelic three-locus system can be classified in terms of shapes of the

fitness landscape, or triangulations of the 3-cube (Beerenwinkel et al., 2007). There are 74 shapes

for the 3-cube. The shape of the fitness landscapes is determined by the signs of the 20 circuits. It

follows that rank orders provide some information about possible shapes. However, the following

result shows that rank orders do not determine shapes.

Proposition 5. Consider a three-locus biallelic system. No rank order determines the shape of a

fitness landscape.

Proof. The result follows from the characterization of shapes for the 3-cube in

(Beerenwinkel et al., 2007), where each shape is described in terms of a circuit sign pattern. We

verified computationally that no rank order implies that all the circuits have the signs which describe

a particular shape (https://github.com/gavruskin/fitlands#analysis-of-rank-orders) . More precisely,

for every circuit a; . . . ; t, we determined the set of all rank orders that imply that the circuit is positive

or negative.

Table 2. Comparison of the rank order method with t-test.

The first column lists the four interaction coordinates and twenty circuits. The second column shows

p-values returned by Student’s t-test based on fitness measurements. The third column shows which

interactions are significant based on 0.03 threshold and their signs. For comparison, the last column

displays the results obtained from rank order methods.

Interaction p-value Result From rank order

u011 1.13e-31 þ 0

u101 2.67e-12 � 0

u110 1.20e-24 � 0

u111 1.50e-29 þ þ

a 7.10e-16 � þ

b 5.23e-32 � �

c 7.62e-04 þ þ

d 8.36e-68 � �

e 1.39e-38 þ þ

f 2.59e-01 0 0

g 3.10e-59 � 0

h 2.22e-02 � þ

i 7.97e-05 þ 0

j 2.20e-32 � �

k 1.96e-05 þ 0

l 7.50e-51 � �

m 4.88e-07 � 0

n 9.87e-37 þ 0

o 8.83e-03 þ 0

p 7.18e-19 þ þ

q 1.94e-01 0 0

r 5.02e-50 þ þ

s 7.10e-27 � 0

t 8.49e-61 � �
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For every rank order, we then considered the circuit signs determined by the order. In no case

did a rank order determine all the circuit signs necessary for describing a particular shape.□

The fact that rank orders do not determine the shape of a fitness landscape over a three-locus

system is not surprising. Shapes reflect interactions in a very fine scaled way, whereas rank orders

provide only coarse information.

Corollary 6. For each of the interaction coordinates u110, u101, and u011, the number of rank orders

which determines its sign is 16,128.

Proof. The linear form for each interaction coordinate consists of 8 elements, 4 with positive signs

and 4 with negative signs. Notice that 16; 128 rank orders imply three-way epistasis, by Proposition

1. By Theorem 3 the problem can be reduced to counting Dyck words of length 8. It follows that the

number of rank orders is 16; 128 for each interaction coordinate.□

Note that the sign of a given interaction coordinate is determined for 16; 128 out of 40; 320 rank

orders, that is 2=5 or all rank orders. As mentioned, the Walsh coefficients E110, E101, E011 differ from

the interaction coordinates u110, u101, u011 only by a scalar, so that Corollary 6 applies to the coeffi-

cients as well.

Partial orders and fitness graphs
We now consider partial orders, for instance,

w111>w110;w100;w010;w001>w000>w101;w011

for a three-locus system. Arguing as in the proof of Proposition 1, the (unknown) total order is

mapped to the word oxxxxeee under ’u1...1 , where xxxx is some permutation of eooo. For any such per-

mutation we get a Dyck word. It follows that the system has three-way epistasis. This condition can

be stated and proved in a more general form.

Proposition 7. Consider an n-locus biallelic system. Let ei and oi be defined as in the proof of

Proposition 1. If there exists a partition of the total set of fitness values into pairs ðei; oiÞ, where ei>oi
for all i, then one can conclude n-way epistasis. By symmetry, the same is true for a partition where

ei<oi for each pair.

Proof. We will verify that the existence of a partition as described is equivalent to the order being

mapped to a Dyck word under the map ’u1...1 . It is immediate that the existence of such a partition

implies that the order is mapped to a Dyck word. Conversely, if the rank order is mapped to a Dyck

word under ’u1...1 , then one can construct a partition as follows. One pair in the partition corresponds

to the first e and the first o in the Dyck word, a second pair corresponds to the second e and the sec-

ond o in the word, and so forth. This partition has the desired property.□

A fitness graph is a directed acyclic graph where each node represents a genotype, and arrows

connect each pair of mutational neighbors, directed toward the node representing the genotype of

higher fitness. Moreover, fitness graphs are structured so that the node labeled 0 . . . 0 is at the bot-

tom, genotypes with exactly one 1 on the level above, and so forth (see Figure 6).

Our systematic analysis of fitness graphs takes advantage of the fact that some graphs are iso-

morphic, that is, there exists an edge preserving bijection between the nodes of the graphs. In bio-

logical terms, an isomorphism can be considered a relabeling of the genotypes such that mutational

neighbors stay neighbors and the direction of arrows indicating higher fitness is preserved. For

example, Figure 5 shows two isomorphic fitness graphs.

The analysis of the two-locus case is straightforward. An arbitrary fitness graph is isomorphic to a

graph where 00 has the lowest fitness. There are four fitness graphs satisfying the assumption.

Indeed, two of the arrows point up, so that there are in total 2� 2 ¼ 4 possible fitness graphs

depending on the directions of the remaining arrows (Figure 3). By inspection, two of the graphs in

the figure are isomorphic. Consequently, there are three different fitness graphs for two-locus sys-

tems up to isomorphism.

Some fitness graphs imply epistasis, whereas other fitness graphs are compatible with additive fit-

ness. As illustrated in the two-locus case, a fitness graph is compatible with additive fitness if all

arrows point up, that is toward a higher level. More generally, a fitness graph implies epistasis unless

it is isomorphic to a graph where all arrows point up. Indeed, the graph implies sign epistasis unless

such an isomorphism exists. (Weinreich et al., 2005; Crona et al., 2013).
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Accordingly, we can characterize rank orders that are compatible with fitness graphs with all

arrows up. After relabeling genotypes, we can assume that the genotype 0 . . . 0 has the lowest fit-

ness in the system. Then a rank order is compatible with a fitness graph with all arrows up, exactly if

for each genotype replacing 0 by 1 results in higher fitness. For instance, w00<w10<w01<w11 is com-

patible with such a graph whereas the rank order w00<w11<w01<w10 is not.

Table 3. Data from (Franke et al., 2011) on a 5-locus system determined by the mutations fwnA1, argH12, pyrA5, leuA1, and

pheA1.

We consider 5-way epistasis for the system. The first column lists the ranking of the genotypes, where ”?” means missing measure-

ment. The eighth column indicates whether the genotype is odd or even. The ninth and tenth columns show the cumulative number of

o’s and e’s, respectively. The last column indicates whether the number of o’s exceeds the number of e’s (�) or vice versa (þ). We see

that if genotype 11101 has higher fitness than genotype 10011, genotypes 11000; 10010 are ranked arbitrarily, the missing genotype

10111 has rank 1� 15, and 11010 rank 20� 32, then the last column would change to all +’s, so the rank order would imply u11111>0.

Rank fwn arg pyr leu phe #mutations
o/
e #o cumul. #e cumul.

neg. vs
pos.

1 0 0 0 0 0 0 e 0 1 +

2 1 0 0 0 1 2 e 0 2 +

3 0 1 0 1 1 3 o 1 2 +

4 0 1 0 0 1 2 e 1 3 +

5 1 1 0 1 1 4 e 1 4 +

6 (or 7) 1 1 0 0 0 2 e 1 5 +

7 (or 6) 1 0 0 1 0 2 e 1 6 +

8 0 0 0 0 1 1 o 2 6 +

9 1 1 1 0 0 3 o 3 6 +

10 0 1 0 0 0 1 o 4 6 +

11 0 1 1 0 1 3 o 5 6 +

12 1 0 1 0 0 2 e 5 7 +

13 0 0 0 1 0 1 o 6 7 +

14 1 0 0 0 0 1 o 7 7 +

15 1 1 0 0 1 3 o 8 7 �

16 0 1 1 0 0 2 e 8 8 +

17 0 0 1 1 1 3 o 9 8 �

18 (or 19) 1 1 1 0 1 4 e 9 9 þ

19 (or 18) 1 0 0 1 1 3 o 10 9 �

20 0 0 0 1 1 2 e 10 10 +

21 0 1 0 1 0 2 e 10 11 +

22 0 0 1 0 1 2 e 10 12 +

23 0 0 1 0 0 1 o 11 12 +

24 0 1 1 1 1 4 e 11 13 +

25 0 1 1 1 0 3 o 12 13 +

26 0 0 1 1 0 2 e 12 14 +

27 1 0 1 0 1 3 o 13 14 +

28 1 1 1 1 0 4 e 13 15 +

29 1 1 1 1 1 5 o 14 15 +

30 1 0 1 1 0 3 o 15 15 +

? 1 1 0 1 0 3 o ? ? ?

? 1 0 1 1 1 4 e ? ? ?
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If 000 has the lowest fitness in the system, one can verify that exactly 48 rank orders are compati-

ble with the fitness graph with all arrows up. It follows that in total 8� 48 ¼ 384 rank orders are com-

patible with such graphs since there are eight genotypes in a three-locus system, each of which can

have lowest fitness.

Interestingly, the same result can be obtained from theory on house-of-cards landscapes. Since

all rank orders are equally likely under this statistical fitness landscape model, the fraction of rank

orders that imply sign epistasis agrees with the probability of sign epistasis. This probability is 104

105

(Schmiegelt and Krug 2014, Table 2). It follows that 8!� 1

105
¼ 384 rank orders are compatible with

fitness graphs with all arrows up, that is, the total number of rank orders multiplied by the fraction of

rank orders compatible with such graphs.

As we have already seen, rank orders have potential far beyond detecting whether or not there is

epistasis in a system. The same is true for fitness graphs, and we proceed with higher order interac-

tions. In order to analyze fitness graphs and three-way epistasis, we consider the set of rank orders

compatible with a given fitness graphs. For instance, the fitness graph in Figure 10 is compatible

with the following two rank orders:

w111>w000>w100>w010>w001>w110>w101>w011; (5)

w000>w111>w100>w010>w001>w110>w101>w011: (6)

The first order implies three-way epistasis (it is mapped to oeoooeee under ’u1;...;1 ) and the second

does not (it is mapped to eooooeee under ’u1;...;1 ). We conclude that in this case, the fitness graph

does not imply higher order epistasis. However, if every rank order compatible with the fitness graph

implies higher order epistasis, then the fitness graph itself does imply higher order epistasis. More

generally, the same observation holds for any partial order.

Remark. A partial order implies higher order epistasis exactly if all its total extensions imply

higher order epistasis.

Indeed, if all total extensions imply higher order epistasis, then in particular the (unknown) rank

order does. The converse holds by definition.

Consequently, one can in principle determine if a fitness graph implies higher order epistasis by

checking all of the compatible rank orders. For a systematic study of the three-locus case, it is conve-

nient to reduce the problem to isomorphic graphs. Figure 5 shows two isomorphic fitness graphs.

As mentioned in the main text, there are in total 1; 862 fitness graphs for three-locus systems, and

the number of fitness graphs that imply higher order epistasis is 698 (37 percent). Up to isomorphism

there are in total 54 fitness graphs, and 20 graphs imply higher order epistasis. This result was veri-

fied by reducing the study of all 1; 862 graphs for three-locus systems to a non-redundant list of 54

graphs, such that no two graphs in the list are isomorphic. The fact that the total number of graphs

is 1; 862 follows from general theory on acyclic graphs (Stanley, 2006), or can be verified computa-

tionally (see below).

Isomorphisms between three-locus systems have a geometric interpretation. The fitness graph

can be regarded as a three-dimensional cube, with vertices corresponding to genotypes and edges

corresponding to arrows. The group of isomorphisms (see below) then corresponds to the symmetry

group of the three dimensional cube (Coxeter, 1973). Indeed, it was by way of this equivalence that

we carried out the enumeration described above.

For clarity, we give a more explicit description of the cube isomorphisms. Any isomorphism can

be constructed as a composition of the following two transformations: (i) interchange of labels of the

pair of alleles at a locus, and (ii) change of order of the loci in the bitstring representation of a geno-

type. There are in total forty-eight isomorphisms of the cube, including the identity transformation

which leaves the cube unchanged. Figure 5 is an example of such a transformation, where at the first

locus the labels 0 and 1 have been swapped, and the second and third loci have been interchanged.

The code used for verifying the isomorphisms is available at https://github.com/devingreene/3-

cube-partial-order-count.git.

A cube has 12 edges, so that the total number graphs on the cube (graphs similar to fitness

graphs, but cycles are allowed) is 2
12 ¼ 4096. After exclusion of graphs with cycles, 1; 862 graphs

remain. An arbitrary graph is isomorphic to a graph where 000 has the lowest fitness. This relabeling
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reduces the number of graphs one has to consider substantially, as in the two-locus case. The list of

remaining graphs can be reduced further using the isomorphisms described above to finally obtain

54 graphs (Figure 3).

Graph theoretical aspects
As mentioned in the main text, the 20 graphs which imply higher order epistasis (see Figure 6) con-

stitute a diverse category. We analyzed the category from a graph theoretical point of view, but

could not see that the graphs have any property which singles them out.

Recall that a unique sink orientation is a graph where each face has no more than one sink. Equiv-

alently, there is no subsystems with reciprocal sign epistasis (Crona et al., 2013; Poelwijk et al.,

2007). The category of 20 graphs includes unique sink orientations (also called USO or AOF graph

s), as well as non-USO’s. Moreover, in the terminology of Gärtner and Kaibel, 1998, the category

includes separable and non-separable graphs, as well as realizable and non-realizable graphs.

There were some indications of higher complexity for the category, but only in a statistical sense.

Indeed, as can be verified from Figure 6, the graphs in the category have on average 1.8 sinks (a

sink corresponds to a peak in the landscape), whereas the average number of sinks for all graphs is

1.6. Moreover, 5 out of the 20 graphs (25 percent) in the category are unique sink orientations,

whereas in total 19 out of the 54 graphs (35 percent) are unique sink orientations.

Even though the category of fitness graphs which implies epistasis is diverse, it is still possible

that a characterization exists. This is an open problem.

Software and HIV-1 study
We have implemented algorithms based on our theoretical results in an open source software pack-

age (https://github.com/gavruskin/fitlands#fitlands). The package provides software for detecting

gene interactions as described in the main text for two- and three-locus systems. Furthermore, algo-

rithms for detecting total n-way epistasis, three- and four-way interaction coordinates and three-way

circuit interactions have been implemented. The documentation also explains how to reproduce

results for our application to HIV-1 data described in the main text.

The results of Student’s t-test explained in the main text are summarized in Table 1, and for

related code see https://github.com/gavruskin/fitlands/blob/master/HIV_2007_conventional_analy-

sis.ipynb
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Gärtner B, Kaibel V. 1998. Abstract Objective Function Graphs on the 3-Cube: A Classification by Realizability:
University of Cologne.
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